jump to navigation

3D – The Key to Tobii’s Performance Lead October 17, 2016

Posted by Scott Hodgins in eye tracking, Glasses, Market Research, Marketing, Media, neuromarketing, Shopper Research, Technology, Tips And Tricks, Tobii, Updates, Usability & UX.
Tags: , , , , , ,
trackback

This post is trying to answer some of the most common questions that we get asked – Why should I buy a Tobii? Why is it better? System “X” has a “better head box” and system “Y” is cheaper.

The answer from our point of view is simple, the eyetracking is more accurate than using other systems for more people over a longer timeframe.

This is a pretty grand claim, why are we so confident?

Let’s start at the beginning; Eyetracking itself is straight forward, there are several well documented methods to find and follow the pupil, Tobii uses a non-intrusive video based technique called “Pupil Centre Corneal Reflection” (PCCR). Essentially an IR illuminator is used to help differentiate between the pupil and the iris, it also creates a highlight or glint that we use as well. The Tobii systems use an improved version of this idea, the secret-sauce as it were being a combination of two things, illumination and data modelling. These two areas allow the remote and wearable trackers to monitor the respondents relative 3D position in space, adjust the calibration parameters in the 3D physiological model, and therefore afford a far greater range of movement than similar systems while keeping accuracy and precision.
(Figure below shows the native 3D data from the TG2)

3d-head-coord-tobii

Illumination: Tobii can use up to two different lighting techniques known as bright and dark pupil to optimise the illumination for the participant in that location, and crucially when they move we can adapt the illumination to keep track of them. This allows a Tobii to offer people greater freedom of movement while retaining the tracking accuracy without the need for constant drift correction from the system operator.

Data modelling: The Tobii method is different having typically used multiple cameras in their research grade eyetrackers and have done since the launch of the T and X series systems in 2007/8. The advantage of using multiple cameras is that we can physically describe the location of the eye in space. That is to say we know with a very high degree of accuracy where the centre of your eye is, and which eye it is, for every sample recorded. The slightly different images from the pair of cameras in an X2 for example allows the creation of a 3D physiological model of the eyes it is tracking during calibration. This approach allows Tobii to understand the movement of the eye or the eyetracker should one or the other move and adjust the calibration accordingly with a high degree of precision.

The net result is that the these systems can accommodate movement, even if the head leaves the area trackable by the hardware and can recover tracking when the eyes are visible again, this is one of the reasons people keep choosing Tobii for demanding applications like infant research and in-vivo commercial research. In a recent study Acuity Intelligence recruited 330 people as they were entering supermarkets and didn’t have to turn away a single participant because they could not be tracked – a first for any data collection exercise with this number of people regardless of the brand of technology they were using.

Don’t just take out word for it, please challenge us, whether it is onscreen, in the real world or in the emerging AR and VR application areas we can help.

 

Comments»

No comments yet — be the first.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: