jump to navigation

Copy Cat Brands – Who is Trying to Steal Your Attention? October 31, 2016

Posted by Jon Ward in Advertising, eye tracking, Market Research, Marketing, neuromarketing, Shopper Research.
add a comment

 

Tim from Acuity has recently been speaking at a conference in Peru where he presented some of the exciting findings from our parasitic brands research last year. Using the world leading facilities at the GSK SSL and in partnership with the British Brands Group we tested people’s recognition of famous brands and their not-so-famous imposters under a variety of conditions. Have a watch of the video below and maybe head over to the Acuity Intelligence website and read more about the study here : http://www.acuity-intelligence.com/blog/statute-of-imitations

 

Tobii Eyetracking & Garmin GPS/ANT+ Data for Sports and Real-World Wayfinding Research October 31, 2016

Posted by Scott Hodgins in Biometric, eye tracking, Glasses, Tips And Tricks, Tobii, Uncategorized.
add a comment

In Jon’s previous blog post he mentioned me running and training with some friends over at Forest Fit Clubs and added a video link. I wanted to reply to the inevitable questions about data overlays etc. and how did we do this with the Tobii software? The short answer is that we didn’t, here’s a “how to” to get you started.

This version is based on a running, other examples include:

  •  Wayfinding – overlay GPS data on the eyetracking video so you can immediately see where pedestrians moved in the built environment. Understanding how people use signage, do they see it? do they understand and use it?
  • Driving & Flying – use the GPS and speed/G-Metrix data to understand the technique and relationships between looking-engaging and acting on that information.
  • Data overlay’s are not just limited to the Garmin descriptions – you can hack the overlays to change the title and add maybe GSR data, or cognitive data and arousal metrics from an EEG such as the ABM X-10

Overview.
We wanted to show the power of adding basic data overlays onto the eyetracking video so we could easily associate an action from the video with a resultant change in data. We had a Garmin VIRB XE that we had used for a technical demonstration with a customer. I had noticed that the VIRB produced MP4 files, as did the Tobii Glasses 2 (TG2), so the idea of hacking the workflow, swapping the VIRB video out and overlaying biometric and location data over the TG2 video data was born. Below is a video showing an overview of the software.

The kit list:
1 x Tobii Glasses 2 (any variant)
1 x Garmin Fenix 2 Sports watch (now replaced by the Fenix 3 and Fenix 3 HR, which may be an alternative source for HRM data)
1 x Garmin HRM RUN Heart rate monitor, we wanted this as it also offered specific run data, not just HR
1 x Garmin VIRB XE & Garmin VIRB Edit Software (we didn’t use the camera, just the software)
1 x Willing participant (me, and yes I calibrated myself, in daylight, outside, it is super-easy with the TG2) with a suitable pocket or running belt to stash the recording unit in.

The steps:

  1. Assemble the TG2:
    Connect Head Unit-Cable-Recording Unit, Insert SD Card, Insert Battery & power up. This took about 5 minutes instead of the normal 2 minutes as I threaded the cable under my base layer to control the cable movement and placed the recording unit in a neoprene running belt to control movement. (1)
  2. Power up the controlling computer, we use Dell Venue 11 Pro’s (Now Dell Latitude 11 5000) running W7 Pro or W10 Pro x64.
  3. Connect to the TG2 WLAN, start Tobii Glasses Controller, select “New Recording”, add a participant name and description.
  4. Calibrate: Select the icon in the bottom right of the screen to calibrate (easy on the tablet – just touch) and look at the calibration marker – for non Tobii users a fully 3D calibration is completed typically <5s. A major advantage of this ground-breaking 3D calibration model is that we don’t have to try and “work around the data” during analysis. (2)
  5. Start the recording, then start the recording on the Garmin Fenix while looking at the screen – it’s not perfect but we should be able to sync the data to the frame where the recording started and at 25fps video we are sure that we are sync’d to about 40ms. (3) Turn the laptop off, or put it in sleep mode.
  6. Run around, enjoy the beautiful scenery at Somerley.
  7. Finish session, cool down, stretch – up to 90 minutes per battery so we have plenty of time head back to the car and stop the recording on both the Garmin Fenix and the TG2
  8. Stopping the recording, then select the recording and start to output the 1080p HD video.
  9. Sync Garmin to the cloud – in this case it was Bluetooth to Garmin Connect on my iPhone then auto sync’d to the cloud (connect.garmin.com)
  10. Login to your connect account, select the activity and download the FIT or GPX data from this session.
  11. Open VIRB Edit, create a new video and import the video you exported from the Tobii Glasses Controller, then add this to the video timeline.
  12. Import the FIT or GPX data, click on G-Metrix and then on Data and find your file.
  13. Sync the two files using one of the options at the foot of the G-Metrix>Data dialogue.
  14. Now use either the Templates and Gauges options to add data overlays on to the video, you can use appearance to change the colour of the gauges.
  15. Importing the logo & setting up a new template is more art than science – good luck with that, I think it took me about a dozen failed attempts then it magically worked, I took the time to try again while writing this, it now shows as a Beta function in the software.
  16. Export the video to your chosen resolution and quality.

The next post will look at doing something similar, using TEA Captiv as a more scientific option, with multiple video feeds and more data options.

The end result:

Notes:

  1. It is worth taking 5 minutes here to make sure you have free movement before starting, otherwise turning too sharply could lead to disconnection or discomfort. Because I used the wireless version, once I was wired up and adjusted I didn’t need to touch the system again until I was retrieving data.
  2. Other wearable/head mounted eyetrackers have issues when we start looking in different planes. Their calibration model is typically a one dimension transform that is adequate when looking in the calibrated plane, the calibration will suffer when looking in a different plane. For example if we calibrate on a vertical wall (looking at the corners of a picture) then place that picture flat on the desktop we will see trapezoidal offsets, this is also true if we calibrate in a horizontal plane (desk) and look at a vertical target (wall). The result is that if we are not cognoscente of this and take the distorted (erroneous) data at face value we risk producing worthless results.
  3. There is a sync port on the Tobii that can send/receive an LVTTL pulse to/from an external device, however the Garmin watch isn’t designed for this so we chose to keep it simple with a video based sync.
  4. Garmin data formats, I have always used the GPX download to import into VIRB Edit, the FIT data caused a few anomalies specifically with time and GPS origin. The FIT file has all of the data recorded in Garmin Connect, the GPX has less, there was still enough for this example though.

Neuro-Tools : GSR October 24, 2016

Posted by eyetrackrob in Biometric, Captiv, eye tracking, Glasses, Market Research, neuromarketing, TEA, Tobii, Uncategorized.
2 comments

As mentioned in my first introduction to this blog, the central nervous system is divided into different branches which monitor and control different body functions. One of the branches, the sympathetic nervous system (SNS), is responsible for quick fight or flight reactions. By constantly accessing the surroundings and scanning for situations that could potentially be dangerous an evaluation takes place which leads to preparations for an adequate fight or flight reaction. These preparations can be measured throughout the body and include changing heart rate, respiration and levels of sweat on hands and feet.

As we start to understand that these non-conscious reactions are strongly and inseparably tied to decision making processes and thus human behaviour, more and more researchers have become interested in using tools to measure these reactions.

In my first post a few weeks ago, I wrote about the general rise of Neuro-Tools and mentioned some such as eyetracking, EEG, facial expression analysis, GSR, heartrate and respiration as well as Implicit Association Tests as examples. The series aims to go through these tools one by one and review what they measure, how they work and of course also where we run into the limitations of those tools. With the general objective to give you a perspective on how these tools can be made a valuable addition for your research, I’d like to continue the series looking at GSR today. Initially I thought of talking about GSR, heartrate and respiration in this post as they could easily be summarized as “biometrics” or “biofeedback measurements”, but it turned out to be a quite long post, so I’ll split them down into individual posts.

Enough of the introductions! Let’s dig into the exciting world of biometrics starting with:

Galvanic Skin Response

GSR isn’t simply around measuring sweat, there is an awful lot more to it than that so before offering some general advice on what to look out for when considering to use GSR, I would like to explain the basics around this tool.

Electrodermal Activity (EDA), Skin Conductance (SC) or Galvanic Skin Response (GSR) refer to the ability of the skin to conduct electricity due to changes in the activity of the sweat glands and thus the secretion of sweat. Those changes are closely related to psychological processes and can be triggered by emotional stimulation. Electricity can be conducted when an external, unnoticeable current of constant voltage is applied, and with more moisture on the skin, electrical resistance decreases and skin conductance increases at a measurable level, although sweat might not necessarily be visible through visual observation.

Skin conductance can be divided into tonic and phasic activity. The level of conductivity of the tonic activity is constantly changing within each individual respondent, depending on their hydration, skin dryness and autonomic regulation in response to environmental factors such as temperature for example. Phasic response in turn are short term peaks in GSR reflecting reactions of the SNS to emotionally arousing events, mostly independent of the tonic level. For most of the time, we will be looking at these reactions which occur in the eccrine sweat glands.

GSR data is measured in microsiemens (μS) and the relevant phasic reactions can be quantified and analysed in different ways. Apart from the number of peaks occurring within a certain period after stimulus onset, peak amplitude, the time to reach peak value and the recovery time can be used for analysis. GSR can be used to determine strength of arousal but can’t be used to determine the valence (like or dislike) of a reaction.

eda-example

Image 1 is an example of data including tonic and phasic activity.

 

The density of sweat glands varies across the body being highest on the head, the palms and fingers as well as on the sole of the feet. Most tools that measure the GSR are therefore build to be used on the fingers, where this reaction is strongest. However some instruments on the market allow for measuring the change in sweat levels on the wrist which often results in poorer data quality but might be necessary for some experiments where the hands are needed to interact with objects (i.e. holding mobile devices/products or typing).

 

eccrine-sweat-glands-distribution-2

 

Image 2 shows eccrine sweat gland concentration. Red areas indicate a high concentration of eccrine sweat glands (glands.cm−2) allowing to measure sympathetic arousal of low intensity and minimal duration. Green zones indicate a low concentration of relevant sweat glands able to measure only events of high intensity (for example on the wrist). (N. Taylor; C. Machado-Moreira, 2013

 

Depending on the manufacturer and kind of system used for the measurements, sensors can be adhesive electrode pads that are already filled with conductive gel in order to reduce preparation time and to avoid electrode movement. Conductive gel is not mandatory but can improve data quality and ensure a good and stable electrical connection. Many GSR device manufacturers that provide systems for the use on fingers and toes, provide Velcro straps to place the electrodes firmly. In any case excessive respiration, movements and talking should be avoided as these can cause noise in the data or variations in the signal that can be misinterpreted.

tsensgsr           e4-front_light

Image 3 shows a classic sensor (TEA T-Sens GSR) that can be placed on the fingertips adjustable with velcro straps next to an Empatica E4 wristband. 

 

As written in the introduction, reaction times and strength are highly individual and therefore distinct for each participant and they can vary between 400 milliseconds up to 5 seconds after presenting a stimulus. In a controlled lab environment a calibration procedure can help to understand individual differences in reactions but might not always be necessary. It is not advised to use GSR in areas where many low and high impact events can occur uncontrolled at any time and can be mixed with all kinds of artifacts, as it might be complex, if not impossible, to relate an emotional arousal peak to a specific event.
If free movement is a requirement (for example in shopper research) it is highly recommended to calibrate the GSR reaction time and strength for each participant and to complement the GSR measure with a synchronized video and sound feed -ideally even with eyetracking- to understand the source of the arousing events. The synchronization of several feeds can sometimes be a challenge but there are solutions that allow either for a live synchronization or a post-recording-synchronization.

 

tea-synch

Image 4 shows a synchronized recording of different sensors such as ECG, HR, HRV, Respiration and Cogntitive Workload with eyetracking (top right) and an additional video stream (bottom right). The synchronization can be done for example using the QR code that is visible on the screen (top left) marking a synchronization point in video and sensor feed.  

 

t-log

Image 5 shows a TEA T-Log, a small and mobile device that emits a short flash of light that can be picked up by a camera or in the video of the Tobii Glasses marking a visible event in the video and a sync point in the sensor recordings.

 

How GSR raw data, filtered data and emotion detection works all synchronized with eyetracking, can be seen in the following short video, recorded from TEA Captiv. I also imported data from a wrist-worn GSR device but the data was not usable, which is why I chose to minimize those curves in the software.  As you can see in Image 2 the concentration of eccrine sweat glands on the wrist is low which very often means having a very noisy signal or the absence of a signal. To improve the signal quality it is recommended to get a minimum level of tonic sweating, for example through some physical exercises. Although I did this (as you can indirectly and briefly see at the very beginning of the video), it wasn’t enough to make the measurement from the wrist usable. For these types of study (researching and improving the emotional and visual impact of TV commercials), I would usually recommend to use a remote eyetracker such as the Tobii X2-60 as well as sensors worn on the fingers (T-Sens GSR or similar), however I also wanted to show that it can easily be done with a mobile eyetracker if needed as shown below:

 

In comparison you can also watch a video of a similar test (same commercials) using a remote eyetracker as mentioned above. You’ll notice similarities in the general gaze data but also in the arousal detection, although you might also notice that each participant has a slightly different reaction time and  the emotional threshold has an influence on how many emotional moments each person is experiencing:

 

There is still a bit more to know about GSR and we at Acuity are do offer training on methodologies, technology and best practices for your research. To give you a headstart on some of the things to consider have a think about these 4 questions and then maybe give us a call:

  1. Where will the data collection happen? Do you need to be completely mobile, or will it be a controlled environment close to a computer? If you go mobile, can you carry a small device to record the data or does the GSR device itself needs to store the data?
  2. What type of sensor do you need? Is it a viable option to use sensors on the fingers, or will you need to use the hands to hold something or type for example?
  3. Do you know how to analyse the data? GSR raw data is rarely usable. Do you know how to remove the effects of tonic activity and artifacts and do you need a software that can do it for you and find the relevant events?
  4. Do you need to synchronize the data with other devices and do you want to accumulate data over several participants?

In the next post I’ll be covering heart rate and respiration to wrap up the more commonly used biofeedback tools before taking on EEG, facial expression analysis, Implicit association tests and others. Stay tuned!

 

3D – The Key to Tobii’s Performance Lead October 17, 2016

Posted by Scott Hodgins in eye tracking, Glasses, Market Research, Marketing, Media, neuromarketing, Shopper Research, Technology, Tips And Tricks, Tobii, Updates, Usability & UX.
Tags: , , , , , ,
add a comment

This post is trying to answer some of the most common questions that we get asked – Why should I buy a Tobii? Why is it better? System “X” has a “better head box” and system “Y” is cheaper.

The answer from our point of view is simple, the eyetracking is more accurate than using other systems for more people over a longer timeframe.

This is a pretty grand claim, why are we so confident?

Let’s start at the beginning; Eyetracking itself is straight forward, there are several well documented methods to find and follow the pupil, Tobii uses a non-intrusive video based technique called “Pupil Centre Corneal Reflection” (PCCR). Essentially an IR illuminator is used to help differentiate between the pupil and the iris, it also creates a highlight or glint that we use as well. The Tobii systems use an improved version of this idea, the secret-sauce as it were being a combination of two things, illumination and data modelling. These two areas allow the remote and wearable trackers to monitor the respondents relative 3D position in space, adjust the calibration parameters in the 3D physiological model, and therefore afford a far greater range of movement than similar systems while keeping accuracy and precision.
(Figure below shows the native 3D data from the TG2)

3d-head-coord-tobii

Illumination: Tobii can use up to two different lighting techniques known as bright and dark pupil to optimise the illumination for the participant in that location, and crucially when they move we can adapt the illumination to keep track of them. This allows a Tobii to offer people greater freedom of movement while retaining the tracking accuracy without the need for constant drift correction from the system operator.

Data modelling: The Tobii method is different having typically used multiple cameras in their research grade eyetrackers and have done since the launch of the T and X series systems in 2007/8. The advantage of using multiple cameras is that we can physically describe the location of the eye in space. That is to say we know with a very high degree of accuracy where the centre of your eye is, and which eye it is, for every sample recorded. The slightly different images from the pair of cameras in an X2 for example allows the creation of a 3D physiological model of the eyes it is tracking during calibration. This approach allows Tobii to understand the movement of the eye or the eyetracker should one or the other move and adjust the calibration accordingly with a high degree of precision.

The net result is that the these systems can accommodate movement, even if the head leaves the area trackable by the hardware and can recover tracking when the eyes are visible again, this is one of the reasons people keep choosing Tobii for demanding applications like infant research and in-vivo commercial research. In a recent study Acuity Intelligence recruited 330 people as they were entering supermarkets and didn’t have to turn away a single participant because they could not be tracked – a first for any data collection exercise with this number of people regardless of the brand of technology they were using.

Don’t just take out word for it, please challenge us, whether it is onscreen, in the real world or in the emerging AR and VR application areas we can help.

 

Tobii Glasses 2 – Great for Human Performance Studies, Indoors or Out! October 4, 2016

Posted by Jon Ward in Biometric, eye tracking, Glasses, TEA, Technology, Tobii, Uncategorized.
add a comment

One of Acuity’s directors, Scott, likes to run around in the forest early morning and do some circuit training and we thought this would be an ideal opportunity to test out the Tobii glasses alongside his fitness tracker and GPS watch which allows us to overlay his positional data, heart rate, speed and distance travelled over the eye tracking video output. This would give a researcher a fantastic insight into the participants performance during sports research, medical or clinical trials or military type studies and is really simple to integrate. What really stood out for us was how well the Tobii Glasses 2 performed across a wide range of lighting conditions, movement, physical activity and stayed resilient to the moisture in the air and the beads of sweat from Scott’s forehead!

By using it’s unique four camera eyetracking system the Tobii Glasses can compensate for slippage which occurs under normal use – and was even more extreme under these test conditions – and it remains accurate, as you can see for the video! Also with the low hanging sun coming up through the trees, the Tobii Glasses full HD scene camera worked fantastically and eyetracking data remained solid, robust and accurate.

Don’t just take my word for it – have a look for yourself and if you want to discuss the Tobii Glasses, our range of biometric options or anything else then please don’t hesitate to get in touch via sales@acuity-ets.com or on +44 1189 000795.